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Testing of Aspheric Wavefronts and Surfaces

D. Malacara, J. C. Wyant, K. Creath, and J. Schmit

12.1. INTRODUCTION

Aspheric wavefronts with spherical aberration are produced by optical systems using

spherical as well as aspherical surfaces. Aspheric surfaces are used in optical systems

in order to improve aberration correction and, frequently, to decrease the number of

optical elements needed to make this correction satisfactorily. However, if these

surfaces are tested while being isolated from the rest of the optical system to which

they belong, they frequently produce aspherical wavefronts. The interferometric

testing and measurement of aspherical wavefronts are not as simple as in the case of

spherical or flat wavefronts.

To test aspherics, often a null test is issued. The usual definition of a null test is that

which produces a fringe-free field when the desired wavefront is obtained. Then, if a

tilt between the wavefront under test and the reference wavefront is added and the

paraxial curvature of them are equal, straight and parallel fringes are obtained. Under

these conditions, any deviation from straightness of the fringes is a graphical

representation of the wavefront deformation. This is the ideal testing procedure

because the desired wavefront is easily identified and measured with high accuracy.

There are several methods to obtain this null test, but sometimes this is not simple and

may even be a source of possible errors.

Typically, if a quantitative retrieval of the wavefront is desired, the interferogram

is imaged onto a CCD detector. Then, the straightness of the fringes for a perfect

wavefront is useful but not absolutely necessary. However, the minimum fringe

spacing should be larger than twice the pixel size in the detector. This is the well-

known Nyquist condition, which may be impossible to satisfy if the wavefront has a

strong asphericity.

In a Fizeau or Twyman–Green interferogram, a strong rotationally symmetric

aspheric wavefront has many fringes when taken at the paraxial focus setting

as shown in Figure 12.1(a). By adding a small curvature to the wavefront, that is,

by adding defocusing, the minimum fringe spacing can be slightly reduced. For
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example, let us assume that the aspheric wavefront with rotational symmetry can be

represented by

WðSÞ ¼ aS2 þ bS4 ð12:1Þ

where S is the radial distance from the optical axis (S2 ¼ x2 þ y2), the first term to the

right of the equal sign is the defocusing, and the second term is the asphericity

(primary aberration). The defocusing coefficient a should be chosen so that the

minimum fringe spacing on the pupil aperture is as large as possible. The fringe

spacing is defined by the wavefront slope, so the maximum wavefront slope has to be

minimized. This condition is satisfied if (see Fig. 12.2)

a ¼ � 3

2
bS2max ð12:2Þ

This increases the minimum fringe spacing in the interferogram by a factor of 4, as

illustrated in Figure 12.1(b).

To simplify the analysis of a single fringe pattern with closed fringes, it is

sometimes necessary to introduce a large tilt so that only open fringes appear as

shown in Figure 12.1(c). Then, we say that a linear carrier has been introduced along

FIGURE 12.1. Interferogram of an aspheric wavefront with primary spherical aberration (a) at the

paraxial focus, without tilt; (b) at the best focus, without tilt; and (c) at the best focus, with large tilt.
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FIGURE 12.2. Wavefront profiles for primary spherical aberration at three different focus settings.
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the x axis. With these conditions, when scanning the wavefront along horizontal lines

the same fringe is not scanned twice. The problem with this method is that the

introduction of the large tilt that opens the fringes also decreases the fringe spacing.

The minimum fringe spacing occurs where the sum of the slope of the wavefront

under test plus the slope of the reference wavefront tilt is the largest.

In a rotationally symmetric aspheric wavefront, the fringes are concentric rings

and also in many other interferograms the fringes may close, forming loops. This

kind of interferograms are difficult to analyze and frequently some special compli-

cated techniques have to be used. A second and more important disadvantage is that

the fringe spacing is quite small near the edge of the pupil.

When sampling an interferogram where the Nyquist condition is violated,

each pupil detector measures the average intensity of the light falling over its

small area. If the fringe spacing is smaller than twice the pixel size, the image of

the fringes is washed out or the contrast will be greatly reduced if these two

dimensions are similar as shown in Figure 12.3(a). If the pixel size is much smaller

than its spacing, instead of a low fringe contrast, some false spurious fringes will

appear, as shown in Figure 12.3(b). This effect is known as aliasing. Most CCD

detectors have a pixel spacing almost equal to the pixel size. So, fringe aliasing is not

common.

12.2. SOME METHODS TO TEST ASPHERIC WAVEFRONTS

There are several methods that had been used to test aspheric surfaces, which will be

described in this chapter. The methods for testing the quality of aspheric surfaces that

have been developed can be classified into the following categories:

1. One of the several possible non-null classic tests can be quantitatively used,

measuring the wavefront with the Foucault, Ronchi or Hartmann tests, mathematically

FIGURE 12.3. Interferogram of an aspheric wavefront with primary spherical aberration (a) at the

paraxial focus, without tilt; (b) at the best focus, without tilt; and (c) at the best focus, with large tilt.
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in calculating the surface deformations with respect to the closest sphere. This

process in general is time consuming, and frequently the accuracy of the results

is not high enough if the aspheric deformation is strong, due to their relatively

smaller sensitivity as compared with interferometry. These methods are described in

Chapters 8–10.

2. For conicoidal surfaces with symmetry of revolution, there is always a pair of

conjugate focii that are free of spherical aberration as illustrated in Figure 12.4. Then,

if the surface under test is illuminated with a convergent or divergent wavefront with

the center of curvature at the proper focus, the reflected wavefront is spherical and

thus is easier to test. To produce the necessary illuminating wavefront, some

auxiliary optical elements are nearly always necessary. There are several of these

null configurations that will be described here.

3. Some additional optical elements can be added to the testing system to

compensate for the spherical aberration of the wavefront reflected from the aspheric

surface. Then, an auxiliary optical system is designed so that, in combination with the

aspheric surface, it forms a stigmatic image of a point source. The auxiliary optical

system is called a null corrector or null compensator. These methods will be

described in this chapter.

4. If only one interferogram picture is taken and the asphericity is not very strong,

several interferometric methods can be used to evaluate the fringe pattern. However,

if the asphericity is strong and the fringe spacing is not larger than twice the pixel

separation at the detector (Nyquist condition), the interferogram may become

impossible to analyze. Analysis is possible only with a procedure described by

Greivenkamp (1987) and only when the following conditions are satisfied:

(a) The pixel size is smaller than the pixel separation. Then, spurious fringes

will appear where the Nyquist condition is not satisfied.

(b) The wavefront’s general shape is known.

(c) The expected wavefront is smooth. The problem is then solved by proper

phase unwrapping until the retrieved wavefront and its slopes are continuous.

HyperboloidEllipsoid

(a) (b)

FIGURE 12.4. Reflective concave and convex ellipsoidal and hyperboloidal surfaces.
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5. With phase-shifting techniques, a series of Fizeau or Twyman–Green interfer-

ogram can be used without the introduction of tilt, even if closed loop fringes are

formed. A series of a minimum of three interferograms have to be taken with different

values of the constant term for the phase, also called piston term. Then, the inter-

pretation of the wavefront evaluation becomes relatively simple from a mathematical

point of view, but it is much more complicated from the experimental point of view.

The phase shifting techniques are described in detail in Chapter 14. When measuring

an aspheric wavefront with phase shifting, the defocusing term has to be properly

chosen so that the fringe spacing is minimum as described before. As pointed out

before, the limitation is that by using the optimum focus setting, the Nyquist

condition is not violated.

6. If the wavefront has a strong deviation from sphericity, even phase shifting

techniques become impossible. Another possibility under these conditions is to test

thewavefront by dividing the complete aperture into small regions where the Nyquist

condition is not violated. In other words, in all small regions the fringe spacing

should be larger than twice the pixel separation. This technique, sometimes referred

to as a wavefront stitching technique, will be described in this chapter.

7. If a longer wavelength is used, the dynamic range is increased by reducing

some of its sensitivity. For example, by operating at 10.6 mm, the dynamic range is

increased twenty times, approximately.

8. Sources and detectors for longer wavelengths may be prohibitively expensive.

A solution to this problem may be found in two-wavelength methods, where fringes

at longer (synthetic) wavelength are created by simultaneous exposure at two

different wavelengths. These fringes, which are resolvable for high slopes at a longer

wavelength, may be analyzed with a phase shifting method. Different synthetic

wavelengths can be obtained by combining different visible wavelengths, as

described in Chapter 15 and Section 12.13 in this chapter.

9. Lateral or radial shear interferometry, as described in Chapters 4 and 5,

provides a larger dynamic range for testing strong aspherics, but a smaller sensitivity.

12.3. IMAGING OF THE INTERFERENCE PATTERN

IN NON-NULL TESTS

An aberrated wavefront continuously changes its shape as it travels; therefore, if the

wavefront is aspherical, the interference pattern will also continuously change as the

beam advances as shown in Figure 12.5. Since the errors of an instrument are

represented by wavefront distortions on the pupil, the interferogram should represent

the wavefront deformations at that place.

The problem is even worse if the wavefront travels twice through the optical

system during the test. For example, when testing a lens with any of the configura-

tions as described in Chapter 2, the wavefront travels twice through the lens; the

second time, it travels after being reflected from the small mirror in front of the lens.

If the aberration is small, the total wavefront deformation is twice the deformation
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introduced in a single pass through the lens. However, if the aberration is large, this

condition is not followed, because the wavefront changes while traveling from the

lens to the mirror and back to the lens. Then, the spot in the surface on which the

defect is located is not imaged back onto itself by the concave or convex mirror, and

the ray will not pass through this defect the second time. Great confusion then results

with regard to the interpretation of the interferogram, since the defect is not precisely

duplicated by the double pass through the lens.

It may be shown that the image of the lens is formed at a distance L from the lens,

which is given by

L ¼ 2ðF � rÞ2

2F � r
ð12:3Þ

where F is the focal length and r is the mirror radius of curvature (r > 0 for a convex

mirror and r < 0 for a concave mirror). We may see that the ideal mirror is convex

and very close to the lens (r � F).

An adequate optical arrangement has to be used if the lens under test has a large

aberration, in order to image its pupil back on itself. Any auxiliary lenses or mirrors

must preserve the wavefront shape. Some examples of these arrangements are shown

in Figure 12.6 (Malacara and Menchaca, 1985).

However, for microscope objectives these solution is not satisfactory because the

ideal place to observe the fringes is at the back focus. In this case the Dyson (1959)

system illustrated in Figure 12.7 is an ideal solution. It is interesting to point out that

Dyson’s system may be used to place the self-conjugate plane at concave or convex

surface, while maintaining the concentricity of the surfaces.

Even if the wavefront passes only once through the optical system under test, the

second problem is to image the interference pattern on the observing detector, screen,

or photographic plate. The imaging lens does not need to preserve the wavefront

shape if it is placed after the beam splitter, and thus both interfering wavefronts pass

through this lens. However, this lens has to be designed in such a way that the

interference pattern is imaged without any distortion, assuming that the pupil of the

system is at an image of the point light source as shown in Figure 12.8(a). A rotating

FIGURE 12.5. Change in the wavefront profile as it travels.
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ground glass in the plane of the interferogram might be sometimes useful in order to

reduce the noise due to speckle and dust in the optical components. Ideally, this

rotating glass should not be completely ground in order to reduce the loss of

brightness and to keep the stop of the imaging lens at the original position, as shown

in Figure 12.8(b). If the rotating glass is completely ground, the stop of the imaging

Lens under test Spherical mirror Spherical mirrorLens under test

Lens under test Spherical mirror

Lens under test Lens under testReflecting surface Plane mirror

FIGURE12.6. Systems to image the pupil of theoptical element under test back on itself after reflection at

the mirror.

Back focus of
microscope
objective

Spherical
mirror

R   =
N

N – 1
R  =12 R  + d1

R2

R1 d

FIGURE 12.7. Dyson system to image the back focus of the microscope objective back on itself, after

reflection on a concave mirror.
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lens should be shifted to the lens in order to use all available light, but then the

lens must be designed taking this new stop position into consideration as shown in

Figure 12.8(c).

12.4. SOME NULL TESTING CONFIGURATIONS

Now some of the many possible configurations that allow a null test of an aspheric

surface are reviewed.

12.4.1. Flat and Concave Spherical Surfaces

Not only aspheric surfaces are sometimes difficult to test, even spherical surfaces

are difficult if the radius of curvature is too short or too large with respect to its

diameter. Some null test configurations appropriate for flat or concave spherical

surfaces are shown in Figure 12.9, with the relevant parameters and dimensions

(Ritchey, 1904).

12.4.2. Telescope Refracting Objectives

A telescope doublet may easily be tested by autocollimation against an optical flat as

shown in Figure 12.10. The flat must, of course, be as good as the rest of the system is

intended to be. It is also necessary to keep the light source and the testing point as

close as possible to each other to avoid astigmatism. When a system is double passed

(including the case of the testing of a single concave surface at the center of

curvature), as in this configuration, any antisymmetric wavefront aberration, like

Interference
pattern

Imaging
lens Stop

Image of
pattern pattern

Image of
Stoplens

Imaging
pattern
interference

pattern
Image of

lens
imaging

pattern
interference

Half-ground
glass and

Ground glass and Stop and

(a) (b)

(c)

FIGURE 12.8. Imaging of the interferogram on the observation plane by means of a lens (a) without any

rotating ground glass, (b) with a rotating half-ground glass, and (c) with a rotating fully-ground glass.
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coma, transverse color, and distortion, is canceled due to the the symmetry of the

system.

12.4.3. Concave Paraboloidal Surfaces

If the paraboloid is not too large popular configurations use autocollimation with an

optical flat as shown in Figure 12.11. The amount of spherical convexity or concavity

permissible in the flat mirror used in autocollimation tests was shown by Burch

(1938) to be given by

d ¼ 64
f

D

� �2 e
4Q� 0:5

ð12:4Þ

where F is the effective focal length and D is the aperture diameter of the system

under test. The symbol d represents the depth in fringes of the spherical concavity or
convexity of the ‘‘flat’’ mirror, and e represents the tolerance, also in fringes, of the

Short focus
spherical
mirror

Microscope
objective

under test

Light source
and
testing point

Mirror

Light source
and
testing point

Mirror
under test

Light source
and
testing point

under test

FIGURE 12.9. Testing concave spherical and flat mirrors.

Lens
under test

Light source
and
testing point

Reference
flat mirror

FIGURE 12.10. Testing a lens by autocollimation against a flat mirror.

442 TESTING OF ASPHERIC WAVEFRONTS AND SURFACES



zonal effect error introduced. If the system under test is refracting, the zonal error is

�2e=ðN � 1Þ, where N is the refractive index. The parameter Q is defined by

Q ¼ � OSC

sin2 y
¼ 1

sin2 y
Y

F sin y
� 1

� �
ð12:5Þ

where OSC is the ‘‘offense against the sine condition’’ and y is the angle at which a

marginal ray with height Yat the entrance pupil converges to the focus of the system.

As Burch pointed out, a paraboloid and an aplanatic system are the two cases of

practical interest: for these, Q ¼ 0:25 and Q ¼ 0, respectively, giving

d ¼ �128
F

D

� �2

e ð12:6Þ

If the paraboloid has a large aperture with respect to its radius of curvature, a point

light source may be placed at its focus. Then, the collimated beam may be examined

with another paraboloid with the same diameter but much larger focal length, as

proposed by Parks (1974).

12.4.4. Concave Ellipsoidal or Spheroidal Surfaces

An ellipsoidal sometimes also called a prolate spheroid surface, obtained by rotation

of the ellipse about it’s major axis may be tested with conjugates at finite but at

different distances (Kirkham, 1953) as shown in Figure 12.12(a). In a Twyman–

Green interferometer, a configuration, like the one illustrated in Figure 12.13 and as

suggested by Schwider (1999), can be used. Two identical lenses have to be used in

both the arms of the interferometer, so that the aberration introduced by the lenses is

the same.

mirror
under test Collimated

beam of light

flat mirror
Reference

Paraboloidal

mirror
Paraboloidal

under test

Paraboloidal
mirror
under test

Reference
flat mirror

Testing
point

Light source
and
testing point

Light source
and
testing point

Reference
flat mirror

Light source
and
testing point

Off-axis
paraboloidal
mirror

FIGURE 12.11. Testing paraboloidal concave mirrors.
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An oblate spheroid is obtained by rotating the ellipse about its minor axis. In this

case the images at the foci of the ellipse are astigmatic. Coma aberration is not

present due to the symmetry of the system. A small cylindrical lens may be placed

near its focus in order to correct this astigmatism if necessary (Everhart, 1966) as

shown in Figure 12.12(b). Several different arrangements to test oblate spheroids

using refractive compensators have been proposed, as described by Rodgers and

Parks (1984).

12.5. TESTING OF CONVEX HYPERBOLOIDAL SURFACES

12.5.1. Hindle Type Tests

The testing of convex hyperboloids is very important for astronomical instruments.

The most common test for these surfaces has been implemented by using a Hindle

sphere as described in the following section. The problem with this method is that a

Ellipsoid Oblate spheroid

Cylindrical
lens

(a) (b)

FIGURE 12.12. Testing concave ellipsoidal and oblate spheroidal mirrors.

Two
identical
lenses

Ellipsoidal
concave
mirror

FIGURE 12.13. Testing and ellipsoidal concave mirror in a Twyman–Green interferometer.
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very large concave spherical surface, much larger than the surface under test, is

required. Various other methods using compensators have been reported for testing

convex hyperboloids, as described by Parks and Shao (1988).

We have mentioned that when testing conicoids a null test is obtained, then

the center of curvature of the illuminating wavefront is at the proper focus; but

since at least one of the geometrical foci is inaccessible, additional optical

elements are required. A convex hyperboloidal surface can be tested with the

method proposed by Hindle (1931), who showed how an autostigmatic arrange-

ment for testing a convex hyperboloid can be implemented by retro-reflection

from a sphere whose center is at the inaccessible focus of the hyperboloid as

shown in Figure 12.14(a). Concave ellipsoidal surfaces can be examined with a

Hindle arrangement, as shown in Figure 12.14(b). Small concave hyperboloids

are also tested in a similar way (Silvertooth, 1940) as shown in Figure 12.14(c) A

complete two mirror Cassegrain or Ritchey–Chrétien telescope can be tested in

an autocollimating configuration devised by Ritchey if a large reference flat is

available (see Fig. 12.14(d)).

Figure 12.15 shows Hindle arrangements for testing convex paraboloids and

convex prolate spheroids. In addition to the Hindle sphere, a collimator is required

to test a convex paraboloid. To test an ellipsoid (prolate spheroid), a lens designed for

conjugates at finite distances is needed to provide a beam that converges to one of the

spheroidal foci.

Although the Hindle and related tests for convex conicoids affords a stigmatic

retroreflected image, its implementation is often impractical because keeping the

obscuration inherent in the test within permissible bounds results in a prohibitively

large spherical mirror. In the case of a hyperboloid of diameter D, the aperture of the

Hindle sphere DH is given by the relation

DH ¼ Dðmþ 1Þ
mr þ 1

ð12:7Þ

where r is the permissible obscuration ratio, and m is the magnification of the

hyperboloid for its stigmatic conjugates. Thus, a 0.25-m hyperboloid with m ¼ 10

and permissible r ¼ 0:2 requires a 0.92-m Hindle sphere.

A modification of the Hindle test that avoids this difficulty was described by

Simpson et al. (1974). Their arrangement is shown in Figure 12.16. The concave

surface of a meniscus element serves as the Hindle sphere. This surface is half

silvered so that it can be placed close to the conicoid without introducing obscura-

tion. The radius of the convex surface can be chosen to compensate for the spherical

aberration introduced by the refraction of the light beam passing through the concave

surface. This testing configuration has been studied by Robbert (1979) and by

Howard et al. (1983).

To test the effect of the meniscus Hindle element on the retroreflected wave, the

hyperboloid is removed and the retroreflected image of S from a calibrating sphere

with center at F is examined. Any significant aberration introduced by the meniscus

can then be subtracted from the measurement of the figure error of the hyperboloid.
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FIGURE 12.14. Hindle, Silvertooth, and Ritchey tests for hyperboloidal mirrors.
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A meniscus was designed to test the 0.25-m 10� hyperboloid mentioned earlier.

The geometrical foci of the hyperboloid were at 0.6 and 6 m. The base radius of the

hyperboloid is thus 1.33333 m, and its conic constant is K ¼ �1:49383. Glass of
index 1.52 was chosen for the meniscus element. For a 5 cm separation of the

meniscus from the hyperboloid, the radius of the concave surface is 65 cm. With a

meniscus thickness of 5 cm, the radius of the convex surface that results in aberration

compensation at the edge of the aperture is 66.6637 cm. The required clear aperture

of the meniscus is 0.254 m. The RMS (root mean square) of the wavefront deforma-

tions as given by the OPD (optical path difference) of the retroreflected wave is

0.0016 l at l ¼ 632:8 nm. The stigmatic quality of the retroreflected image is thus

retained in this modified Hindle test. Its use for testing convex conicoids is limited

Light source

testing point
and

spherical mirror
Auxiliary

under test

Paraboloidal
mirror

(a)

and
testing point

Light source

(b)

spherical mirror
Auxiliary

under test
mirror
Ellipsoidal

FIGURE 12.15. Testing paraboloidal and ellipsoidal convex mirrors.
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FIGURE 12.16. Simpson–Oland–Meckel modified Hindle arrangement.
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only by the availability of refracting material of approximately the same size as the

surface being tested.

An inconvenience with the Hindle test is that a large spherical mirror is needed.

Another solution has been proposed byMeinel and Meinel (l983a, 1983b) in order to

test the hyperboloid from the back surface. The mirror has to be made out of fused

quartz in order to have good transparency and homogeneity. There are two possible

optical arrangements for this test, one is shown in Figure 12.17(a) with the light

source and the testing point at the same position. The surface has to be slightly

convex with a long radius of curvature. As pointed out byMeinel andMeinel, a better

solution is obtained if the back surface is made flat and the spherical aberration is

completely corrected by locating the light source and the testing point along the

optical axis, separated some distance from each other as shown in Figure 12.17(b).

Many interesting variations of this test and some others may be found in a paper by

Parks and Shao (1988).

12.5.2. Testing by Refraction

Descartes discovered that a refractive conical can focus an incident collimated beam

of light without any spherical aberration, if the conic constant K is equal to

K ¼ � n1

n2

� �2

ð12:8Þ

Hyperboloid

(b)

(a)

Hyperboloid
surface
convex
Slightly

surface
Flat

C

C

FIGURE12.17. Meinel’s test for a hyperboloidal convexmirror (a) using equal conjugates, with the light

source and the testing point at the same position and (b) using unequal conjugates. The light source and the

testing point are at different positions, but they can be made to coincide if a double-pass configuration is

used, by placing a small flat mirror on these points.
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where n1 is the refractive index of the first medium and n2 is the refractive index of

the second medium. There are two possible solutions:

(a) If n2 > n1 and r > 0, the conic is an ellipsoid, sometimes called Descartes

ovoid, as shown in Figure 12.18(a). If the first medium is air and the second

one is glass, we have a conic constant given by

K ¼ � 1

n2
ð12:9Þ

and if the distance from the vertex of the ellipsoid to the second focus, which is

the point of convergence, is L, we have

Lc ¼ n

n� 1
ð12:10Þ

where c is the vertex curvature.

(b) If n2 < n1 and r < 0, this is a hyperboloid, as illustrated in Figure 12.18(b). If

the first medium is glass and the second one is air, the conic constant is

K ¼ �n2 ð12:11Þ

Hyperboloid

Ellipsoid

K = –n2

K = – 2n
1

(a)

(b)

FIGURE 12.18. Cartesian configuration for an ellipsoid and a hyperboloid.
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and if the distance from the vertex of the hyperboloid to the focus, which is the point

of convergence, is L, we have

Lc ¼ � 1

n� 1
ð12:12Þ

where the vertex curvature is negative.

Table 12.1 gives the main parameters for two common optical glasses.

Using this property, a convex hyperboloid may be tested with the arrangement

given in Figure 12.19, if the index of refraction of the glass is of the proper value. The

glass has to be clear and homogeneous; so optical glass or fused silica have to be

used. Pyrex or glassceramic materials are not adequate. Since this test is made by

transmission instead of reflection, the wavefront deformations OPD and the surface

deformations W are related by W ¼ OPD=2ðn� 1Þ, which is about half the sensi-

tivity obtained in a reflective arrangement.

If the refractive index is not adequate to produce an aplanatic image, an object

distance may be selected so that the image is free of primary spherical aberration.

This may be done by ray tracing, but an approximate solution may be calculated

which requires that the third-order spherical aberration in Eq. (16.26) be zero. By

making n�1 ¼ 1 and defining a distance l ¼ y=u�1, this condition is

ð8A1 þ Kc3Þ þ
ðnþ1Þ

l
þ c

n2
cþ 1

l

� �2

¼ 0 ð12:13Þ

TABLE 12.1. Main parameter for the focusing of a collimated beam using a refractive

conicoid with two common optical glasses.

Refractive index Ellipsoid Hyperboloid

n K Lc K Lc

BK7 1.5168 �0.4347 2.9350 �2.3007 �1.9350

F2 1.6200 �0.3810 2.6129 �2.6244 �1.6129

Hyperboloid

K = –n2

Reflecting
plane

FIGURE 12.19. Testing a hyperboloid with a Cartesian configuration.
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Then, as suggested by James and Waterworth (1965), a lens with a convex

hyperboloidal surface may be tested as shown in Figure 12.20. The spherical

aberration of the second surface is eliminated by bringing this surface in contact

with another lens using oil, whose second surface is spherical and is concentric with

the testing point. In this case, however, the compensation is not perfect, since some

small residual aberrations may remain. The sensitivity in about one fourth of that

obtained in a reflective arrangement.

This property of the lenses with one hyperbolic convex surface can be used to

test a convex surface with another procedure suggested by Bruns (1983). A

convergent lens is placed in front of the convex surface under test to compensate

for the spherical aberration introduced by the convex hyperbolic surface under

test as illustrated in Figure 12.21. Unfortunately, no lens with spherical surfaces

may correct the spherical aberration of the hyperboloid. So, Bruns uses a lens

with a hyperboloidal surface. This hyperboloid in the front lens has conic

constant KL related to the selected glass refraction index. This makes the lens

very simple to test when a collimated beam enters the lens through the flat face,

since for this lens orientation spherical aberration is corrected. When this lens is

used in reverse, that is, with the collimated beam entering the convex surface, it

has a spherical aberration with the proper sign to cancel that of the convex

mirror.

If the desired conic constant for the convex mirror is KM, with radius of

curvature RM , Bruns has shown that the spherical aberration of this system is

Testing
point

Spherical
surfacesurface

Light
source

Hyperboloidal

Dummy lens

FIGURE 12.20. Testing an aspheric surface by selecting the conjugate distance that produces the

minimum amount of spherical aberration.

HyperboloidHyperboloid

C

FIGURE 12.21. Testing a hyperboloidal surface by using an aspherical lens to compensate the spherical

aberration.
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compensated for when the refractive index nL of the lens in front is given by the

following relation:

KM ¼ � 2ðnL þ 1ÞðRM þ dÞ
nLðnL � 1ÞRM

ð12:14Þ

where d is the separation between the flat surface of the lens and the mirror, and an

infinitely thin lens is assumed. The focal length of the lens is equal to RM þ d. The

value of RM is fixed, thus nL and dmust be chosen so that this relation is satisfied for

the desired value of KM.

12.6. TESTING OF CYLINDRICAL SURFACES

A concave cylindrical surface can be tested as illustrated in Figure 12.22, where the

axis of the cylindrical test is in the vertical direction (Shnurr and Mann, 1981). A flat

reference surface that reflects partially is located at the focus of the cylinder where

the image is formed like a bright and narrow vertical line. The retroreflected

wavefront is flat. It has to be noticed, however, that the wavefront is reversed about

a vertical axis. Since the light is reflected twice on the surface under test, the

antisymmetric mirror deformations are cancelled out while the symmetrical compo-

nents are duplicated. Also, a highly spatially coherent illumination like that produced

by a gas laser is needed.

C

Light from

(a) Top view

C

(b) Side view

testing
instrument

Light from
testing
instrument

Flat reference
surface

Flat reference
surface

Cylindrical
surface
under test

Cylindrical
surface
under test

FIGURE 12.22. Testing a concave cylindrical surface in Twyman–Green interferometer using an

auxiliary flat surface.
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Since the light being reflected is quite narrow, resembling a bright line, the

reference mirror can be substituted by a very narrow mirror covering just the image

and not the whole aperture. It must be remembered that this narrow image is not a

perfect line due to the aberrations of the mirror under test. Geary and Parker (1987)

and Geary (1991) substituted the narrow mirror by a thin fiber as shown in

Figure 12.23. The fiber is coated to make it highly reflective and thinner than the

width of the image due to the aberrations. The wavefront reflected back to the

cylindrical surface on the fiber is cylindrical. Then, the aberrations are not duplicated

due to the double pass, and the antisymmetrical components of the aberration are

eliminated.

A cylindrical lens can also be tested using similar arrangements with a flat mirror

as shown in Figure 12.24, or with a wire. The same conclusions as described in the

last paragraph apply to this test.

A convex cylindrical mirror can be tested with the arrangement in Figure 12.25.

The difference is that the beam from the interferometer has to be convergent. The

retro-reflected wavefront is also spherical.

Another approach to test cylindrical lenses has been proposed by Lamprecht et al.

(2003). The cylindrical wavefront produced by the cylindrical lens is transformed

back to a planewavefront by means of a diffractive optical element, which is made by

optical e-beam lithography.

12.7. EARLY COMPENSATORS

This section on null compensators is adapted from the original chapter in earlier

versions of this book, written by late Abbe Offner. The corresponding test of a

C
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(a) Top view
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(b) Side view
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FIGURE12.23. Testing a concave cylindrical surface inTwyman–Green interferometer using a reflective

fiber.
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FIGURE 12.24. Testing a convergent cylindrical lens in Twyman–Green interferometer.
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FIGURE 12.25. Testing a convex paraboloidal cylindrical surface with an auxiliary flat surface.
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concave paraboloidal mirror is a lengthy and less accurate process. In this case, the

figure errors must be deduced from measurements of the ray transverse aberrations

(surface slopes) for a large number of zones, since a concave aspheric or conic

surface tested at the center of curvature has a spherical aberration wavefront

deformation given in third-order approximation by

WðrÞ ¼ ð8A1 þ Kc3Þr4
4

ð12:15Þ

where Al is the first aspheric deformation term, K is the conic constant, and c ¼ 1=R
is the curvature. For a conic surface we may write

W ¼ 1

4
KR

�
r
R

�4

ð12:16Þ

For many years the only alternative to the method of using the knife-edge test

during the manufacture of a paraboloidal mirror was to test the mirror by autocolli-

mation with the aid of an optical flat, which had to be as large and as accurately

figured as the mirror being manufactured.

12.7.1. Couder, Burch, and Ross Compensators

Couder (1927) pointed out that departure from stigmatism of the image of a point

source at the center of curvature of a paraboloidal mirror can be removed by

interposing a small compensating lens between the image and the mirror. He used

a two-element compensator in the arrangement shown in Figure 12.26. Two elements

were necessary because he required a null corrector of zero total power to conve-

niently carry out the manufacturing process desired in his paper. To manufacture a

30-cm f/5 paraboloidal mirror, he used a null corrector whose aperture (scaled from

his drawing) was about 4 cm.

The use of a spherical mirror beyond the center of curvature of a paraboloid to

compensate for the aberrations of a paraboloid used with source and knife edge near

its center of curvature was described by Burch (1936). He derived the fifth-order

aberration of the null systems of this type and showed that with the two-mirror

arrangement of Figure 12.27, the residual aberration of the paraboloid is less than

one-fortieth of a wave for paraboloids as fast as f=5 and with apertures upto 80 cm,

C

Light
source

Couder
compensator

Testing
point

FIGURE 12.26. Couder two-element compensator.
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when the compensating mirror aperture is one fourth of that of the paraboloid. For

larger apertures and/or faster paraboloids, he suggested figuring the convex mirror

with a down edge that departed from the base sphere by an eighth power law so that

the seventh-order spherical aberration could be balanced. He calculated that an

asphericity of about 2.8A would be required to compensate for the aberrations of

the 5-m f=3.33 Mount Palomar mirror.

A simple third-order solution for a refracting compensator was also published by

Burch (1938). The refractor was a planoconvex lens of focal length f and refractive

index n, used in the arrangement shown in Figure 12.28, in which its plane surface is

reflecting. For an paraboloid of base radius R, the third-order aberration of the image

at the center of curvature is balanced when f ¼ Rn2=ðn� 1Þ2, so that for n ¼ 1:52
the lens has an aperture of about one eighth of that of the paraboloid. Burch expected

the residual aberration with this null corrector to be negligible for paraboloids of

aperture ratio not exceeding f=8. He added, ‘‘Anyone with an aptitude for analytical

optics or for ray-tracing could earn the gratitude of practical opticians by calculating

the secondary aberrations for this and other kinds of compensating lens systems.’’

This plea was answered 30 years later by Holleran (1968).

During the manufacture of the 5-m f=3.33 Mount Palomar mirror, a 25-cm

diameter compensator was used to form a stigmatic retro-reflected image near the

center of curvature of the mirror (Ross, 1943). The arrangement used is shown in

Figure 12.29.
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FIGURE 12.27. Burch two-mirror compensator.
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FIGURE 12.28. Burch planoconvex compensator.
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To obtain a degree of compensation such that the residual zonal aberration resulted

in a disk of confusion that was small compared to that caused by the atmosphere, Ross

found it necessary to add an aspheric corrector plate to a refractive element with

spherical surfaces, which by itself balanced the spherical aberration of the paraboloi-

dal mirror. The retroreflective arrangement used by Ross has the advantage that it is

coma-free and therefore insensitive to departures of the source and knife edge from the

axis of the system. Moreover, since the compensator is used twice, it has to contribute

only one-half as much aberration as is required in Couder’s arrangement.

12.7.2. Dall Compensator

The planoconvex lens of Burch is a convenient and an easily used solution to the

problem of making a null corrector for a paraboloidal mirror of moderate aperture.

However, with this method a planoconvex lens used in the manufacture of a para-

boloidal mirror can serve as a compensator only for other paraboloidal mirrors of the

same focal length.

Dall (1947, 1953) noted that, since the spherical aberration of a lens is a function

of its conjugates, the same planoconvex lens can be used as a compensator for many

paraboloids. Dall employed the arrangement of Figure 12.30, which is quite similar

to the arrangement used by Couder. The major difference is that, the Dall compen-

sator is placed in front of the light source and not in front of the observer’s eye. The

reason for this is that if it is used on the convergent beam, the convergence of the
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FIGURE12.29. Ross aspheric compensator usedduring the fabricationof the 5-mMountPalomarmirror.
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FIGURE 12.30. Dall planoconvex compensator.
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beam may become so large that an observation of the whole surface under test may

not be possible.

The Dall compensator is normally used in an off-axis arrangement, with the light

passing only once through the compensator. Two double-pass configurations, with

the divergent as well as the convergent beams passing through the compensator, may

also be used: (a) exactly on axis, using a beam splitter and (b) slightly off axis. Then,

the compensating lens needs to compensate only bale the total aberration on each

pass, making it less strong. Then, an additional factor of 2 has to be used in front of

Eq. (12.9). Another advantage of the double-pass symmetrical arrangement is that it

is coma free. Thus, any coma introduced by the off-axis lateral displacement of the

light source and the observer or any misalignment of the lens compensator does not

introduce any coma. Unfortunately, the double-pass arrangement may be used only if

the radius of curvature of the surface under test is very large compared with its

diameter.

Dall found that proper choice of the short conjugate of the lens provides adequate

compensation if the ratio of the radius of curvature R of the paraboloid to the focal

length f of the lens is between 10 and 40. The relation required to balance the third-

order aberration of the parabola at its center of curvature is

R

f
¼ 1

2
ðm� 1Þ2 n2ðm� 1Þ2

ðn� 1Þ2
þ ð3nþ 1Þðm� 1Þ

n� 1
þ 3nþ 2

n

" #
ð12:17Þ

wherem is the ratio of the long conjugate distance l0 to the short conjugate distance l,
and n is the index of refraction of the plano-convex lens. (The sign convention is such

that in the Dall arrangement m > 1.)

The Dall compensator has been widely used, especially by amateur telescope

makers. The degree of compensation that can be attained with this extremely simple

null corrector is illustrated by the following example.

A Dall compensator is desired for a 0.6-m f=5 paraboloidal mirror. Taking m ¼ 2,

N ¼ 1:52, and F ¼ 3 m in Eq. (12.11), we find R=f ¼ 11:776, which is within the

bounds prescribed by Dall. The compensator specifications are then f ¼ 50:950 cm,

l ¼ �25:475 cm, and l0 ¼ �50:950 cm. With this null corrector the computed root-

mean-square (RMS) departure from the closest sphere [RMS optical path difference

(OPD)] of thewavefront that converges to form an image of the light source is 0:048l
at l ¼ 632:8 nm. A paraboloid fabricated to give a null test with this compensator

would have an RMS figure error of 0.024A. The Strehl intensity resulting from this

figure error is 0.91. The diameter of the plano-convex lens required to achieve this

compensation is about one-twelfth of that of the paraboloidal mirror.

The paraboloid of the examples is about the largest for which a Dall compensator

is adequate. Since the arrangement suggested by Dall is not coma-free, the light

source must be located accurately on the axis of the convex lens, and this axis should

be directed to pass through the pole of the paraboloid.

Practical instructions for making and using a Dall null tester are given in two

papers by Schlauch (1959) and by Stoltzmann and Hatch (1976). By restricting the
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refractive index of the plano-convex lens to 1.52, the computation of Eq. (12.11) can

be avoided with the help of a curve in Schlauch’s paper, which is adapted from the

one published by Dall (1953).

A Dall lens made with BK-7 glass and using red light can also be calculated with

the curves in Figure 12.31. The radius of curvature is 25 mm and the thickness is

5 mm. A difference with Figure 12.30 is that it has been assumed that the plane

surface of the lens and the testing point (knife edge) are in the same plane, as

illustrated in Figure 12.32. Assuming only the presence of third-order spherical

aberration, from Eq. (12.10) we may say that the distance d from the light source to

the vertex of the convex surface of the lens has to be a function only of the product

KR. This is true only for small apertures (large ratio R=DÞ: If the aperture is large

(ratio R=D small), the fifth-order spherical aberration is present in the Dan lens, and it

1000 2000 3000 4000 5000
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FIGURE12.31. Distanced from the light source to theDall compensator lens in Figure 12.32 for different

values of the product of the radius of curvature times the conic constant.
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FIGURE 12.32. A Dall compensator. The testing point is assumed to be at the same plane as the flat

surface of the Dall lens.
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has to be partially compensated with some overcompensation of the third-order

aberration. Then, a zonal spherical aberration remains uncorrected. This remaining

aberration is not a severe problem if the aperture is small or if there is a large central

obscuration, as pointed out by Rodgers (1986).

A Dall compensator can be modified to be coma-free by using the planoconvex

lens on axis like in the retro-reflective arrangement of Ross. The relation to be

satisfied with this arrangement is a modification of Eq. (12.11) in which the factor 1/2

is eliminated since the lens is traversed twice. With this arrangement, for example,

the compensator for the 0:6�mf=5 paraboloid has R=f ¼ 23:552; f ¼ 25:475 cm,

l ¼ �12:737 cm, and l0 ¼ �25:475 cm. The diameter of the planoconvex lens is then

that of the paraboloid. The residual figure error of the paraboloid that gives a null test

with this arrangement is exactly the same as that computed in the preceding example.

The retroreflective arrangement has the advantage, however, that since it is coma-

free, it is not affected by small departures of the light source from the axis of the

planoconvex lens.

In an interesting variation of the Dall compensator proposed by Puryayev (1973),

an afocal meniscus whose concave surface is conicoidal is substituted for Dall’s

planoconvex lens in the autostigmatic arrangement used by Ross (Fig. 12.29). For an

afocal meniscus,

r1 � r2 ¼
dðn� 1Þ

n
ð12:18Þ

where r1 is the radius of the concave surface of the meniscus, r2 is the radius of its

convex surface, d is its thickness, and n is its index of refraction.

The third-order value of the conic constant K of the concave surface required to

compensate for the aberration of a paraboloid of radius R is

K ¼ R

ðN � 1Þ r2

r1

� �2

l

ð12:19Þ

where l is the distance from the light source to the meniscus. (The sign convention is

such that K is negative.)

With the same 20-cm-diameter meniscus compensator, Puryayev achieved com-

pensation for any paraboloidal or near-paraboloidal surface whose focal length does

not exceed 24 m and whose aperture ratio does not exceed 1:4. The maximum

residual wave aberration of the retro-reflected wave for any paraboloid in this range

is about l/2 at 632.8 nm. This residual can be computed and taken into account when

the figure of the test mirror is being determined.

12.8. REFRACTIVE COMPENSATORS

As described earlier (Burch, 1936; Ross, 1943), compensation for the spherical

aberration of a paraboloid or other aspheric concave mirror can be achieved to any
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desired degree of accuracy by the incorporation of an aspheric element in the null

corrector. This method is limited to cases in which the figure of the aspheric element

can be ascertained with an accuracy better than that desired for the aspheric mirror.

Primary mirrors that are to be incorporated into diffraction-limited space-borne

optical systems are now required to have RMS figure errors as small as one-

hundredth of the wavelength of visible light. It is therefore desirable that the

components of a null corrector for these mirrors be spherical or flat so that their

figure errors can be measured to the required accuracy.

In the design of his null corrector, Ross found that the farther he put the lens from

the center of curvature of the mirror, the less residual aberration there was when

the compensation was exactly at the center and the edge. This is so because, although

the longitudinal spherical aberration S of the normals to the paraboloid follows the

simple law S ¼ y2=2R, where y is the distance of the normal from the axis of the

paraboloid and R is its radius, additional terms of a power series would be required to

describe the same spherical aberration distribution in a coordinate system with its

origin at the null corrector. For a null corrector in contact with the paraboloid, the

compensating spherical aberration would be described by the same simple law.

Unfortunately, this null corrector would be as large as the paraboloid.

12.8.1. Refractive Offner Compensator

Offner (1963) pointed out that a small lens that forms a real image of a point source at

the center of curvature of a paraboloid, in combination with a field lens at the center

of curvature that images the small lens at the paraboloid, is optically equivalent to a

large lens at the paraboloid. The use of a field lens in this way was first suggested by

Schupmann to control secondary spectrum (Schupmann, 1899; Offner, 1969). This

kind of compensator has been widely used to test astronomical optics of many

different characteristics (Sasian, 1988).

With a field lens that images the compensating lens c at the paraboloid in Offner’s

arrangement, the spherical aberration of the compensating lens must follow the same

law for aperture as do the normals to the paraboloid.

This restriction on the compensating lens is not necessary. All that is required is

that lens c provide sufficient third-order spherical aberration to compensate for that

of the normals of the paraboloid. The power of the field lens (and thus the location of

the image of lens c) is then varied to minimize the high-order aberration.

To balance the third-order aberration of the normals to a conicoidal mirror with

conic constant K and base radius R, a planoconvex lens of focal length f and index of

refraction N must satisfy the relation

�KR

f
¼ ð1� mÞ2 n2ð1� mÞ2

ðn� 1Þ2
þ ð3nþ 1Þð1� mÞm

n� 1
þ ð3nþ 2Þm2

n

" #
ð12:20Þ

wherem is the ratio l0=l (Fig. 12.33). (The conicoid must have K < 0 if the aberration

of its normals are to be balanced by the spherical aberration of a planoconvex lens.

The sign convention is such that m < 0.)
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Since the mirror under test in general has a large spherical aberration, the field lens

does not have an ideal position. It may be placed between the mirror and its caustic,

inside the caustic region or outside the caustic. Any of these possible locations

produce good compensations, with slight variations, as explained by Sasian (1989).

Different techniques for designing this compensator have been explored by several

authors, among others, by Landgrave and Moya (1987) and by Moya and Landgrave

(1987).

The main purpose of the field lens is to avoid fifth-order spherical aberration, but

another equally important consequence of its presence is that the wavefront at the

mirror under test is imaged on the planewhere the aberrations are observed, that is, at

the compensating lens.

The importance of the field lens in the Offner arrangement is evident from the

example of the design of a null corrector for a 1-m f=4 paraboloid using planoconvex
lenses with refractive index 1.52. The quantity m that results in the desired conver-

gence angle of the retroreflected wavefront is first chosen.

Choosing a convergence of f=12 leads to m ¼ �0:6667. The value of the focal

length of the compensating lens required to balance the third-order aberration of the

paraboloid normals is then seen from Eq. (12.14) to be 20.9115 cm, since K ¼ �1

and R ¼ 800:0 cm. The conjugates for m ¼ �0:6667 are l ¼ �52:2772 cm and

l0 ¼ �34:8532 cm. The retroreflective system formed by placing the source at the

long conjugate of this lens and the paraboloidal mirror center of curvature at its short

conjugate is corrected for third-order spherical aberration, but has fifth-order lateral

spherical aberration of �0.0205 mm. The RMS OPD of the retroreflected wavefront

is 0.23 l at l ¼ 632:8 nm.

A field lens of focal length 33.3976 cm at the center of curvature of the

paraboloid forms an image of the compensating lens on the paraboloidal mirror.

With this addition, the sign of the fifth-order spherical aberration is reversed, its

value being þ0.0207 mm. The RMS OPD of the retroreflected wave is increased

slightly to 0.26 l.
The focal length of the field lens that minimizes the high-order spherical aberra-

tion is found to be 66.8900 cm. With this field lens, the computed RMS OPD of the

retroreflected wavefront is reduced to 0.0003 l, a value well below what can be

measured. The diameter of the compensating lens required for this degree of

correction is one-twentieth that of the f=4 paraboloid.
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FIGURE 12.33. Refracting compensator with field lens.
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In Eq. (12.14), it is assumed that the curved surface of the planoconvex field lens is

at the center of curvature of the paraboloid. It is sometimes convenient to move the

field lens to a position close to, but not at the center of curvature. In this case the field

lens introduces an additional magnification mf The condition for compensation of

third-order aberration then becomes

�KR

f 2f
¼ ð1� �mÞ2 n2ð1� �mÞ2

ðn� 1Þ2
þ ð3nþ 1Þð1� mÞ�m

n� 1
þ ð3nþ 2Þ�m2

n

" #
ð12:21Þ

where �m ¼ mf
2=m.

Like Ross’s arrangement, the retroreflective arrangement of Offner is inherently

coma-free so that the correction of the retroreflected wavefront is maintained when

the source is near the axis but not exactly on it.

The high degree of stigmatism that can be achieved by the use of the Offner

corrector has led to its application for the quantitative assessment of the figures of

large aperture concave conicoidal mirrors. For this purpose, the retroreflected

wavefront can be compared with a reference sphere in a spherical wave interfe-

rometer (Houston et al., 1967). A multipass version of the spherical wave inter-

ferometer in which the retroreflected wavefront and the reference sphere are

optically conjugate (Heintze et al., 1967) is particularly useful for making this

measurement with the greatest accuracy. With this interferometer, which has been

given the acronym SWIM (spherical wave interferometer multibeam), individual

points of a wavefront have been measured with an accuracy of 0.003 l (private

communication).

12.8.2. Shafer Compensator

This compensator is a triplet, designed by Shafer (1979), so that the following three

conditions are satisfied:

1. For a certain distance from the light source to the compensator, the spherical

wavefront from the light source preserves its spherical shape after passing

through the compensator. Then, positive or negative compensations may be

achieved by displacing the system along the optical axis.

2. The system is afocal (effective focal length infinite), so that the angles with

respect to the optical axis of the light rays entering the system are preserved

after passing through the compensator.

3. The angular magnification of the afocal system, (lateral magnification for a

near object) must be equal toþ1. Thus the apparent position of the light source

does not change when moving the compensator along the optical axis.

A system with a negative lens between two positive lenses, as in Figure 12.34, is

appropriate for positive conic constants (oblate spheroids) of any magnitude and

negative conic constants (paraboloids or hyperboloids) of moderate magnitude as
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shown in the graph in Figure 12.35. This graph is inverted when a positive lens is

placed between two negative lenses.

12.8.3. General Comments about Refracting Compensators

The main refracting compensators are the Couder, Dall, Shafer, and the Offner

compensators. They have the following properties in common:

1. All compensate the spherical aberration but with a different degree of perfec-

tion. The best in this respect is the Offner compensator.

2. All can be used in a single or double pass, but the Couder and Dall compensa-

tors are typically used in a single pass, generally in front of the light source, while the

Shafer and Offner compensators are normally used in double pass.

and
testing point

Light source
To and from
surface 
under test

FIGURE 12.34. Shafer compensator with all lenses made with BK-7 glass.
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FIGURE 12.35. Wavefront aberration due to third-order spherical aberration vs. lens motion for Shafer

compensator and an f/2 system with a wavelength of 632.6 nm.
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3. The chromatic aberration is not corrected in any of these compensators,

hence monochromatic light has to be used. One possibility is to use laser light and

another is to use a color filter. It is suggested to use a red filter close to the eye or

image detector (after the compensator) so that the wavefront shape is not affected by

this filter.

4. The amount of spherical aberration correction depends very critically on the

axial position of the compensating lens; so unless its position is very accurately

measured, we can never be sure about the exact value of the conic constant of the

concave surface under test. This value has to be measured by some other test that

does not use any compensator, like the Hartmann test. However, the general

smoothness of the surface can be easily determined only with a compensator.

5. In a double-pass configuration, any lateral displacement of the light source and

the observer in opposite direction and by equal amounts, with respect to the optical

axis, does not introduce any coma. It is assumed, however, that the optical axis of

both the conic surface under test and the compensating lens coincide; otherwise some

coma is introduced.

12.9. REFLECTING COMPENSATORS

The weak point in making measurements with the Offner null corrector is the

difficulty in measuring the index variations of the nulling element to the required

degree of accuracy. In the example described (Offner, 1963), the thickness of the 4.5-

cm-diameter compensating lens was 1.05 cm. An average index difference of

3� 10�7 along the paths of the two rays that traverse this lens twice results in an

optical path difference of l=100 at l ¼ 632:8 nm. Faster aspheric mirrors with Larger

aperture require larger compensating lens diameters and thicknesses. For these, even

smaller average index differences result in optical path errors of this magnitude.

Fabrication and qualification of large glass elements to this degree of homogeneity is

not feasible at present.

These difficulties can be avoided by substituting spherical mirrors for the

planoconvex refracting compensating element of Figure 12.33. The figure errors of

such elements can be determined with great accuracy. A small field lens can be

retained since it is possible to select small pieces of glass with satisfactorily small

index variations.

It is well known (Burch, 1936) that the axial aberration of a spherical mirror

used at a magnification other than �1 can be used to compensate for the

aberration of the normals of a concave conicoid with negative conic constant.

The high degree of compensation achieved with the Offner refractive null

corrector can also be obtained by a reflecting compensator used with a field

lens at the center of curvature of the conicoid, as shown in Figure 12.36. As in

the refractive version, the radius of the nulling mirror RN and its conjugates l and

l0 are chosen to balance the third-order aberration of the normals to the conicoid

of radius Rc and the conic constant K. The power of the field lens is then
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varied to minimize the high-order aberration. The relations to be satisfied are as

follows:

RN ¼ � 8KRc

ðm2 � 1Þ2
ð12:22Þ

l ¼ ð1� mÞRc

2
ð12:23Þ

m ¼ l

l0
¼ � 2Zc

ZN
ð12:24Þ

where 2Zc and 2ZN are the f numbers of the beam at the center of curvature of the

conicoid and at the retroreflected image, respectively.

The ratio of the diameter of the conicoid Dc to that of the null mirror DN can be

computed from the relation

Dc

DN

¼ ðm2 � 1Þ2

4Kðm� 1Þ ð12:25Þ

Some values of the ratio of the diameter of a paraboloid to that of a single mirror

compensator, computed from Eq. (l2.19), are listed in Table 12.2. Diameter ratios of

more than 10 require values of�m greater than 4. A practical limit on the value of m is

set by the resultant value of hN, the f number at the retroreflected image, which is

inversely proportional to m [Eq. (12.18)]. If the compensated wavefront is to be

examined interferometricallywithout transfer optics, the interferometermust be capable

of handling f=ZN beam. The single-mirror compensator thus requires large compensat-

ingmirrors if Zc, the f number of the conicoidalmirror, is small. The permissible residual

aberration of the compensated image alsomust be taken into account, and in some cases

this results in a value of Ac greater than that set by the lower limit on ZN .

l

l'

To and from
surface
under testField

lens

Testing
point

Compensating
mirror

FIGURE 12.36. Single mirror compensator with field lens.
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For example, a one-mirror compensator was designed for a 3-m f=2.45 hyperbo-

loidal primary mirror of a proposed Ritchey–Chrétien system. The conic constant of

the mirror was �1:003313. A value of �4:9 was chosen for m, resulting in an f=1
beam at the retroreflected image. The third-order mirror specifications computed

from Eqs. (12.4) to (12.7) and the specifications of the optimized design are shown in

Table 12.3. The focal length of the field lens that minimizes the high-order aberration

is 55.4849 cm. The computed RMS OPD of the retroreflected wavefront is 0.009 l at
l ¼ 632:8 nm. If a smaller residual had been required, a smaller value of �m would

have been chosen for the compensator. The resulting compensator mirror would then

have been larger, and the convergence angle of the retroreflected beam would have

been smaller.

12.9.1. Reflective Offner Compensator

Although the single-mirror compensator of Figure 12.36 is optically the least

complicated of the reflecting compensators, practical implementations require an

additional element, such as the folding flat of Figure 12.37, to make the retroreflected

image accessible. The quality of the flat must, of course, be comparable to that of the

spherical mirror.

The same number of accurately fabricated optical components is required in the

two-mirror compensator shown in Figure 12.38. The in-line arrangement facilitates

accurate alignment and provides an accessible retroreflected image.

With the two-mirror compensator, the central portion of the aspheric mirror

cannot be observed because of the holes in the nulling mirrors. These null correctors

should be designed so that the obscured portion of the aspheric mirror in the null test

is no larger than the obscured portion of the aspheric mirror in actual use.

The third-order design of a two-mirror compensator is affected by the value of the

obscuration ratio at each of the mirrors. The following equations apply when the

TABLE 12.2. Diameter ratio and magnification,

single mirror compensator.

Magnification Diameter ratio

�3 4

�3.5 7

�4 11.25

�4.5 16.8

�5 24

TABLE 12.3. One-mirror null corrector for 3-m f=2.45 hyperboloid:

Type of design m RN l AN ZN

Third order �4.9 22.2849 65.7404 13.42 1.000

Optimized �4.7 22.2849 65.7518 13.5 1.044
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obscuration ratio r is the same at the two mirrors. As in the case of the single-mirror

null corrector, the parameters and apertures are functions of a magnification. For the

two-mirror compensator, the magnification is that from the intermediate image to the

image at the center of curvature of the aspheric mirror, defined by the relation

m1 ¼ � 2Zc
Z1

ð12:26Þ

where Z1 is the f number at the intermediate image. The ratios of the diameters of the

apertures of the two nulling mirrors D1 and D2 to the aperture of the conicoid Dc

when the third-order aberration of the conicoid normals is compensated for by that of

the null corrector can be computed from the following relations:

Dc

D1

¼ 1

4K
ðm1 þ 1Þ

�
m2

1ð1þ 2r � r2Þ � 2m1ð1� rÞ � 2
�

ð12:27Þ

Dc

D2

¼ Dc

D1

m1r � 1

m1 þ 1
ð12:28Þ
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FIGURE 12.37. Practical implementation of single-mirror compensator.
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FIGURE 12.38. Two-mirror compensator with field lens.

468 TESTING OF ASPHERIC WAVEFRONTS AND SURFACES



The other relations required for the third-order design are as follows:

R1 ¼
4D1Zc
1� m1

ð12:29Þ

R2 ¼
4D2Zc

m1ð2� rÞ þ 1
ð12:30Þ

l1 ¼ 2ZcD1 ð12:31Þ

d ¼ Z1ðD1 þ D2Þ ð12:32Þ

ZN ¼ � 2Zc
m1ð1� rÞ þ 1

ð12:33Þ

where l1 is the distance from the center of curvature of the conicoid to the field mirror,

d is the distance between the two mirrors, and ZN is the f number at the retroreflected

image.

The way in which the apertures of the two mirrors and the f number of the

retroreflected image vary as a function of the magnification m for two values of the

obscuration ratio can be seen in Table 12.3. Comparison with Table 12.1 shows that

for a given magnification, the larger mirror of the two-mirror compensator is

approximately of the same size as the single-mirror compensator. However, the

difference between the magnitudes of m1 and 2ZcZN in Table 12.3 indicates that,

for a given maximum size compensator element, the convergence angle at the

retroreflected image with the two-mirror compensator is approximately one half of

that with a single-mirror compensator.

The degree of compensation attainable with the two-mirror compensator is

extremely high as shown by the following example. A compensator was required

for a 3-m f=1.5 paraboloid that was to be used with an obscuration ratio of 0.3. A

spherical wave interferometer that could accommodate convergence angles up to

f=1.2 was available. The values r ¼ 0:25 and m1 ¼ �4 were chosen to give the safe

value ZN ¼ 1:5. Equations (14.9) and (14.10) led to the acceptable values

A1 ¼ 14:82 cm and A2 ¼ 27:22 cm. The parameters obtained from Eqs. (12.15) to

(12.19) are listed as third-order design parameters in Table 12.4. The field lens

required to optimize this compensator is a meniscus lens of refractive index 1.519,

thickness 0.5 cm, and radii 14.619 cm (convex) and 71.656 cm (concave), with the

convex surface facing the paraboloid. With this field lens and the slight modifications

of the other parameters shown in Table 12.4, the RMS OPD of the retroreflected

wavefront is 0.009 l at l ¼ 632:8 nm. Had a smaller residual aberration been

TABLE 12.4. Two-mirror null corrector for 3-m f=1.5 paraboloid.

Type of design m1 R1 R2 l1 d A2 ZN

Third order � 4.00 17.7778 22.2222 44.4444 27.7778 22.22 1.50

Optimized � 3.99 17.7776 22.2227 44.3868 27.7789 21.34 1.52

12.9. REFLECTING COMPENSATORS 469



required, the value of m1 would have had to be reduced. This would have resulted in

larger values of A1 , A2, and ZN.

12.9.2. Reflective Adaptive Compensator

Another interesting reflective compensator has been described by Tiziani et al.

(2001). They use an optical configuration where the reflective compensator is an

adaptive mirror whose shape can be changed as desired by controlling it with a

computer. The system in Figure 12.39 adds the reflected wavefront from the aspheric

surface under test to the shape of the adaptive mirror. The light beam is reflected

twice on the adaptivemirror, so that its shape is added twice to the aspheric wavefront

from the system under test. The flexible mirror is an aluminum coated nitride

membrane that is attracted electrostatically by electrodes on the back of the mem-

brane. This membrane can be deflected up to about 20 mm PV, which corresponds to

about 80 wavelengths due to the double reflection on this membrane.

12.10. OTHER COMPENSATORS FOR CONCAVE CONICOIDS

The success of the simple small compensators described in the preceding sections

results from a fortunate combination of conditions.

Focusing

axis at 45°
1/4 phase plate

lens

P polarized light
from interferometer

ASPHERIC SURFACE
UNDER TEST

S Polarized
light

Adaptive
mirror

Polarizing
beam splitter

FIGURE 12.39. Aspheric compensator using an adaptive mirror.
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1. The concave aspheric mirrors by themselves transform the divergent wave

from a point source to a convergent one though aberrated wave.

2. The greater part of the aberration introduced by the aspheric is of low order.

3. The sense of the aberration is opposite to that introduced by a concavemirror or

a simple convex lens.

The first condition must be met if the null corrector is to be smaller than the

aspheric mirror being tested. The second condition makes it possible to get good

compensation with a single element of convenient form. The third condition makes

it possible to use a simple relay lens that provides a position for a field lens.

Concave spherical mirrors can be used for compensators only when this condition

is met.

A small null corrector of the same general form can be designed for any

concave mirror whose surface is generated by rotating a conic section about its

major axis.

Concave prolate spheroids do not require compensators since their geometrical

foci are accessible and, as is the case with all conicoids that have geometrical foci,

their imagery is stigmatic when these are the conjugates. However, when one of the

geometrical foci is at a large distance from the mirror, it may be more convenient to

perform a null test at the center of curvature with one of the null correctors described

in Sections 12.2–12.4.

An oblate spheroid, such as the one that is used as the primary mirror of aWright–

Schmidt system, does not satisfy condition 3. Nevertheless, a null test of the modified

Dall type can be obtained by substituting a plano-concave lens for the Dall plano-

convex lens (Figure 12.40). Since the curved surface of this lens faces the oblate

spheroid, the third-order solution is formally the same as that for the Offner plano-

convex compensator. The parameters and conjugates of the plano-convex lens

required to balance the third-order aberration of the normals to the prolate spheroid

can thus be obtained by the use of Eq. (12.14). The quantity m is the ratio l0/l. In this
case it is positive and has a value less than 1. The effect of the choice ofm on the ratio

of the size of the oblate spheroid to that of the null corrector is shown in Table 12.5;

the values were computed for N ¼ 1:52 and K ¼ 1. The implementation of the value

C
Dall
compensator

Light source
and

l

l'

observer

for oblate spheroids

FIGURE 12.40. Modified Dall compensator for oblate spheroids.
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m ¼ 0 requires the addition of a collimator to put the source optically at an infinite

conjugate. The resulting arrangement is shown in Figure 12.41.

A null corrector of this type was designed for a 0.6-m aperture f /5 oblate spheroid

with conic constant K ¼ 1. The departure of this aspheric from the base sphere is

equal in magnitude but opposite in sense to that of the paraboloid used as an example

in Section 12.2. The values n ¼ 1:52 and m ¼ 0 were chosen. The focal length of

the planoconcave lens, obtained from Eq. (12.10), is 70.2216 m. The RMS OPD

of the retroreflected plane wave is 0.033 l at l ¼ 632:8 nm. The diameter of the null

lens is 0.7 cm.

Holleran (1963, 1964) described a null test for concave conicoids that has the

virtue that no auxiliary optical elements need be manufactured. The surface to be

tested is made level and is immersed in a liquid that forms a planoconvex lens in

contact with the surface under test. In the simplest form of the test, a pinhole light

source and knife edge are placed at a distance d above the plane surface of the liquid.

For liquid lens of thickness t and refractive index n,

d ¼ R

n
� t ð12:34Þ

where R is the vertex radius of curvature of the conicoid. The retroreflected image is

corrected for third-order spherical aberration if

n2 ¼ 1� KR

R� t
ð12:35Þ

where K is the conic constant of the mirror.

TABLE 12.5. Aperture of planoconcave null lens

compensator for oblate spheroid (K ¼ 1; n ¼ 1:52).

m Diameter asphere/Diameter compensator

0.0 8.54

0.1 7.13

0.2 5.88

0.3 4.77

0.4 3.8

C
Dall
compensator
for oblate spheroids
with collimator

Light source
and
observer

FIGURE 12.41. Compensator for oblate spheroid used with a collimator.
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The accuracy of the test is very good for shallow curves of moderate aperture. The

peak-to-valley departure �W of the surface from the desired conicoid when

Eq. (12.29) is satisfied and t � R is

�W � KR

41:5Z6
waves ð12:36Þ

In Eq. (12.30), Z is the f number of the conicoidal mirror,R is its radius in millimeters,

and the wavelength is 632.8 nm. The peak-to-valley error of a 0.5-m-diameter f=3
paraboloid figured to give a perfect null by this test is 0.10 wave. Decreasing the f

number to 2.5 for a mirror having the same aperture increases the figure error to 0.25

wave. The error of an f=2.5 mirror reaches 0.10 wave for an aperture of 0.2 m.

The immersion test in this form can also be applied to convex aspherics by

observing them through a plane back surface. In this case the optical material

replaces the immersion liquid. Puryayev (1971) analyzed an extension of this method

in which an immersion fluid is placed above the plane surface. Since the liquid must

extend to the retro-reflected image, this extension is practical only for small elements.

Puryayev’s equations reduce to those of Holleran when the immersion fluid is air.

A related test for convex hyperboloids, described by Norman (1957), makes use of

the fact that a planoconvex lens forms a stigmatic image of a collimated source on its

axis if the convex surface is a conicoid with eccentricity equal to the refractive index

of the material of which the lens is made. The autocollimated image of a point source

at a distance of one focal length from the convex surface of lens and reflected from its

plane surface, or from a flat mirror parallel to its plane surface, can then be examined

to determine the figure of the convex surface. As in the Holleran and Puryayev tests,

the range of conicoids that can be tested by this method is limited by the range of

refractive indices available. The test can be applied to hyperboloids with magnifica-

tions between 3.5 and 5 when the range of glass indices is restricted to 1.5 to 1.8.

Holleran (1966) showed that a spherical back surface can provide a null test

compensator for a concave oblate spheroid when the latter is tested from the back,

through the spherical surface.

12.11. INTERFEROMETERS USING REAL HOLOGRAMS

Many different experimental setups can be used for the holographic testing of optical

elements. Because a hologram is simply an interferogram with a large tilt angle

between the reference and object wavefronts, holographic tests can be performed

either with standard interferometers or with setups having a larger angle between the

object and reference beams. Figures 12.42 and 12.43 show interferometers that can

be used with a hologram for testing of a concave mirror.

The hologram is made in a plane conjugate to the test mirror. Once the hologram is

made, it can be replaced in the same location and reconstructed by illuminating with

a planewave and by imaging onto a viewing screen.When the object beam is blocked

and the reference mirror is tilted so that the plane reference wave interferes with the

12.11. INTERFEROMETERS USING REAL HOLOGRAMS 473



first-order diffraction from the hologram, the wavefront due to the mirror will be

reconstructed. Because several diffraction orders are produced by the hologram, it is

usually necessary to select one of the diffraction orders using a spatial filter. The

imaging lens and spatial filter are necessary only for the reconstruction of the

hologram.

Holograms can be recorded on photographic plates, thermoplastic materials, or in

photorefractive crystals. Photographic plates provide the highest resolution; how-

ever, they require a lot of chemicals for processing and unless they are processed in

situ, they are hard to replace in the correct location for real-time techniques

(Biedermann, 1975). Thermoplastic materials provide up to 1000 lines/mm resolu-

tion and can be erased and reprocessed hundreds of times (Leung et al., 1979;

Friesem et al., 1980). They also have a very fast turnaround time. Photorefractive

crystals have a lot of potential as a high-resolution recording medium (Lam et al.,

1984; Uhrich and Hesselink 1988); however, the optical setup is more complex, and

getting a high-quality crystal is not as easy as getting other recording materials. A

very promising recording medium is the use of high-resolution detector arrays or

charge-coupled device (CCD) cameras to record a hologram directly.
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FIGURE 12.42. Twyman–Green interferometer with a holographic compensator.
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FIGURE 12.43. Mach–Zehnder interferometer with a holographic compensator.
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12.11.1. Holographic Wavefront Storage

Sometimes it is convenient to holographically store a wavefront produced by an

optical system and analyze the wavefront later without the test system present

(Hildebrand et al., 1967; Hansler, 1968).

Care must be taken to ensure that the reconstructed wavefront is identical to the

wavefront used to record the hologram. Errors are possible from differences between

the reconstructing geometry and the recording geometry, recording material defor-

mation, and aberrations introduced by the recording-material substrate. Errors

introduced because of the differences in the recording and reconstructing geometries

are greatly reduced if the reference wavefront is collimated and the object wavefront

is collimated as well as possible. Collimated wave fronts are particularly important

if the reconstruction wavelength is different from the recording wavelength.

Recording-material deformation can change the shape of the recorded interference

fringes and thereby change the shape of the reconstructed wavefront. It is possible to

keep the root-mean-square (rms) wavefront error less than l=40 by using Kodak

649F photographic plates (Wyant and Bennett 1972). Glass substrates used for

photographic plates generally show optical-thickness variations of at least one fringe

per inch. For wavefront storage, this magnitude of error is not acceptable. This

problem can be solved by either putting the hologram in a fluid gate or index

matching the two surfaces to good optical flats. Thickness variations can also be

minimized by sending both beams through the hologram to cancel the errors.

Stored holograms can be used to test for symmetry in optical components

(Greivenkamp, 1987). A hologram is made of the test surface, and then the test

surface is rotated with respect to the hologram. The fringes from the interference

between the stored wavefront and the wavefront produced by the rotated test surface

will correspond to symmetry deviations in the test surface. Care must be taken not

to translate the test surface while it is rotated because unwanted fringes will affect

the test.

12.11.2. Holographic Test Plate

If an ideal optical system is available, the wavefront produced by the system can be

stored holographically and used to test other optical systems. This is very similar to the

use of a test plate in the testing of optical components (Hansler, 1968; Pastor, 1969;

Snow and Vandewarker, 1970; Lurionov et al., 1972; Broder-Bursztyn and Malacara,

1975). After processing the hologram, it is placed in its original position and themaster

mirror is replaced with a test mirror. The wavefront stored in the hologram is

interferometrically compared with the wavefront produced by the mirror under test.

The secondary interference between the stored wavefront and the test wavefront

should be recorded in a plane conjugate to the exit pupil of the test surface. If the

hologram is made in a plane conjugate to the exit pupil of the mirror under test, the

amount of tilt in the resulting interferogram can be selected by simply changing the tilt

of the wavefront used in the hologram reconstruction process. If the hologram is not

made in a plane conjugate to the exit pupil of the test surface, tilting the reference beam

Q4
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not only adds tilt to the interferogram, it also causes a displacement between the image

of the exit pupil of the test surface and the exit pupil stored by the hologram.

The holographic test plate interferometer can also be thought of in terms of moire

patterns (Pastor, 1969). Interference fringes, resulting from the wavefront stored in

the hologram and thewavefront coming from the optics under test, can be regarded as

the moire pattern between the interference fringes recorded on the hologram plate

(formed by the wavefront produced by the master optics and a plane wave) and the

real-time interference fringes formed by the wavefront under test and a plane

wavefront. The contrast in this moire pattern is increased with spatial filtering by

selecting only the wavefront produced by the mirror under test and the diffraction

order from the hologram, giving the stored wavefront produced by the master optics.

In addition to the error sources already mentioned, there can be error due to

improper positioning of the hologram in the interferometer. Any translation or

rotation of the hologram will introduce error. If the hologram is made conjugate to

the exit pupil of the master optical system, the exit pupil of the system under test must

coincide with the hologram. If the test wavefront in the hologram plane is described

by the function f(x, y), a displacement of the hologram by a distance �x in the x

direction produces an error

�fðx; yÞ � @fðx; yÞ
@x

�x ð12:37Þ

where @f=@x is the slope of the wavefront in the x direction. Similarly, for a

wavefront described by f(r,y), the rotational error �y is given by

�fðr; yÞ � @fðr; yÞ
@y

�y ð12:38Þ

Phase-shifting techniques can be used to measure the phase of the secondary

interference fringes by placing a phase shifter in the reference beam of the inter-

ferometer and shifting the phase of the secondary interference fringes (Hariharan et al.,

1982; Hariharan, 1985). Because the secondary interference fringe spacing corre-

sponds to one wavelength of OPD between the stored wavefront and the live test

surface wavefront, a p=2 phase shift of the fringes for the test surface will cause a p=2
phase shift in the secondary interference fringes. The calculated phase surface will

correspond to the difference between themaster optical component and the test optical

component. To ensure that the fringes actually correspond to the test surface, the

hologrammust be made in the image plane of the test surface, and the hologram plane

must be imaged onto the detector array when the phase measurement is performed.

12.12. INTERFEROMETERS USING SYNTHETIC HOLOGRAMS

When master optics are not available to make a real hologram, a computer generated

(or synthetic) hologram (CGH) can be made (Pastor, 1969; Lee, 1970,1974;
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MacGovern andWyant, 1971;Wyant and Bennett, 1972; Schwider and Burow, 1976;

Caulfield et al., 1981; Ono and Wyant, 1984; Dörband and Tiziani, 1985; Beyerlein

et al., 2002; Reichelt et al., 2004; Pruss et al., 2004). A CGH is a binary representa-

tion of the actual interferogram (hologram) that would be obtained if the ideal

wavefront from the test system is interfered with a tilted plane wavefront. The test

setup is the same as that for a real hologram used as a holographic test plate. CGHs

are an alternative to null optics when testing aspheric optical components.

12.12.1. Fabrication of Computer-Generated Holograms (CGHs)

To make a CGH, the test setup must be ray traced to obtain the fringes in the

hologram plane that result from the interference of the tilted plane wave and the

wavefront that would be obtained if the mirror under test were perfect. Just like a real

hologram used as a test plate, the CGH should be made in a plane conjugate to the

exit pupil of the system under test. These fringes are then represented as a binary

grating, commonly having a 50% duty cycle. Methods for calculating these fringes

are outlined by Wyant and Bennett (1972), Lee (1974), and Arnold (1989). A

procedure that encodes the fringes as a series of exposure rectangles is discussed

by Leung et al., (1980). The process of breaking fringes into rectangles or polygons

reduces the amount of computer storage necessary and the time needed to plot the

CGH. The procedure used to make a CGH can be employed for any general optical

system as long as all the optics in the interferometer are known and can be ray traced.

A typical CGH is shown in Figure 12.44. An example of an interferometer used to

test a steep aspheric optical element is shown in Figure 12.45. If the deviation of the

test surface from a sphere is substantial, the marginal rays (not the paraxial rays) will

follow a different path back through the divergent lens after they have reflected off

the test surface. When the surface under test is properly imaged at the observation

FIGURE 12.44. Computer generated hologram.
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plane, the marginal rays will arrive at the observation plane at the same point where

the corresponding ray following the path through the reference mirror arrives, as

when there is no aspherical deformation, even if the path followed by the ray is

different. By Fermat’s principle, the optical path from any point on the surface under

test to the observation plane is the same for all possible paths, automatically

correcting the error. In conclusion, when there is no proper imaging of the surface

being tested over the detector, there will be an additional aberration added to the final

interferogram. However, in this case, when the entire system is ray traced, the

hologram can be designed to correct these extra aberrations if a null test is performed.

Another important consideration is that the test element may deviate the rays so

much that the light reflected from the test surface will not get back through the

interferometer. In this case, a partial null lens must be used to ensure that light will

get back through the system. This is discussed in more detail in the section on the

combination of CGHs with null optics.

Once the fringes are calculated, they are either plotted directly on a holographic

substrate, or plotted and photographically reduced onto a holographic substrate. The

techniques of plotting have been substantially improved over the years. Early work

utilized pen plotters to make an enlarged version of the hologram that was then

photographically reduced to the appropriate size (MacGovern and Wyant, 1971;

Wyant and Bennett, 1972; Wyant et al., 1984; Wyant and O’Neill, 1974). The large

format enabled a high-resolution CGH to be formed. However, problems due to plotter

irregularities such as line thickness, pen quality, plotter distortion, and quantization

caused errors in the reconstructed wavefront. Nonlinearities inherent in the photo-

graphic process and distortion in the reduction optics caused further degradation.With

the advent of laser-beam recorders, resolution improved due to machine speed and an

increased number of distortion-free recording points (Wyant et al., 1984). The most

recent advances in the recording of CGHs have been made using the electron beam

(e-beam) recorders used for producing masks in the semiconductor industry (Emmel

and Leung, 1979; Leung et al., 1979, 1980; Arnold, 1989). These machines write onto

photoresist deposited on an optical quality glass plate and currently produce the
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FIGURE 12.45. Aspheric test surface in interferometer showing rays not following same path after

reflection off the test surface.
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highest quality CGHs. Patterns with as many as 108 data points can be produced in a

hologram of the desired size. Typical e-beam recorders will write a 1-mm area with a

resolution of 0.25 mm. Large patterns are generated by stitching a number of 1-mm

scans together. Errors in this technique are due to aberrations in the electron optics,

beam drift, instabilities in the controlling electronics, and positioning of the stepper

stage. For in-line holograms a thermochemicalmethodwith selective oxidation of a Cr

coated substrate has been used by Burge et al. (1994). Then, a special writing machine

with a rotary air-bearing spindle rotates the substrate to selectively oxidize some rings

with an Arþ laser. After writing the pattern, the substrate with its coating is immersed

in a liquid that removes all non oxidized Cr.

Many of the errors in CGHs are reproducible and can be compensated for in the

software controlling the recorder (Chang and Burge 1999 and Arnold and Kestner

1995). Plotter errors can be evaluated by generating a hologram that is composed of

straight lines in orthogonal directions forming a grid (Wyant et al., 1984). This test

hologram is then illuminated with two plane waves as shown in Figure 12.46 to

interfere the þN and �N orders. Deviations of the fringes from straight lines will

correspond to errors in the plotting process. The resulting aberration in the inter-

ferogram is 2N times that of the first order.

12.12.2. Using a CGH in an Interferometer

ACGH test is performed by interfering the test wavefront with a reference wavefront

stored in the hologram. This entails overlapping the zero-order test beam and the

first-order reference beam from the hologram in the Fourier plane of the hologram.

The test can also be performed by interfering the minus first-order test beam with the

zero-order reference beam to compare the two plane waves instead of the two

aspheric wavefronts. When the test wavefront departs from the reference wavefront,

fringes corresponding to the difference between the wavefronts appear. In the Fourier

plane of the hologram, the zero- and first-order diffracted spots of the reference

wavefront will overlap the minus first- and zero-order diffracted spots of the test

wavefront when the interferometer is correctly aligned. Both outputs yield the same

interferogram. Spatial filtering can be used to improve the fringe contrast if the tilt of

the plane reference wavefront used for the hologram is large enough.

The CGH compensator can be used off axis as well as in line, with different

advantages and disadvantages, as we will show in the next sections.

Plane
waves

CGH
Spatial
filter

Observing
screen

+N order beam 1 &
–N order beam 2

FIGURE 12.46. Test setup with� N orders of hologram interfering to test the quality of a CGH plotter.
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Also, the position where the CGH is located can be different. There are two

possibilities, one is to place the hologram in the testing space where only the

wavefront under test passes through the hologram. A second possibility is to place

it in the observation space, where both interfering wavefronts pass through the

hologram. Let us analyze these two cases with some detail. A CGH is sensitive to

the same errors as real holograms. Because of this, the CGH should be placed in the

interferometer, so that thickness variations in the hologram substrate have no effect

on the results. The importance of this will depend on where the CGH is located.

(a) If the hologram is placed in the observation space, both the reference

wavefront and the wavefront under test pass through the hologram. Each wavefront

generates its own diffracted wavefronts. Proper spatial filtering should be performed

so that the interference pattern is generated with the diffracted reference wavefront

(aspheric) and the wavefront under test or with the nondiffracted reference wavefront

(flat) and the compensated wavefront under test (nearly plane). Since the CGH is

traversed by both interfering wavefronts, any small imperfection in the glass plate of

the CGH is unimportant.

In this case, the superposition of the hologram and the interference pattern can be

considered as a Moiré pattern. If this pattern is spatially filtered, the interferogram

representing the wavefront deviations with respect to the aspheric surface (not with

respect to a plane) is obtained. If desired, this procedure can even be carried out by

the superposition of two transparencies of the interferogram and the hologram, as

illustrated in Figure 12.47.

(b) If the hologram is placed in the interferometer test space only the wavefront

under test will pass through the hologram, but it will pass twice through it. Let us

represent the diffracted beams after the first pass by their order of diffraction number

(. . .� 2, �1, 0, 1, 2 . . .). Since all these beams come back to the hologram after

reflection on the aspheric surface under test, they can now be represented by a pair of

numbers, the first one being the order of diffraction on the first pass and the second

one the order of diffraction on the second pass. These beams are ordered as follows:

ð�1;�1Þ ð�1; 0Þ ð�1; 1Þ
ð0;�1Þ ð0; 0Þ ð0; 1Þ

ð1;�1Þ ð1; 0Þ ð1; 1Þ

Each column here corresponds to a different diffracted angle. Proper spatial

filtering should then be performed to isolate and observe only the desired beams,

for example (1, 0) with (0, �1) or (0, 1) with (1, 0). Since only the wavefront under

test passes through the hologram, the CGH must be made in a good glass plate, with

flat faces and homogeneous refractive index, otherwise its aberrations will be added

to the diffracted wavefronts.

In addition to the error sources associated with a real hologram, a CGH has

additional error sources due to plotter distortion, incorrect hologram size, and

photoreduction distortion if the hologram is photographically reduced in size. These
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errors are proportional to the maximum slope of the departure of the test wavefront

from a spherical or plane wavefront. These errors can be minimized when the test

wavefront is calculated relative to the spherical wavefront, which minimizes the

slope of the test wavefront departure from a spherical wavefront. Errors due to

photographic reduction can be eliminated by writing a hologram of the correct size

directly onto a glass substrate using an e-beam recorder.

One source of error is incorrect hologram size. If the aberrated test wavefront in

the plane of the hologram is given by f(r, y), a hologram of incorrect size will be

given by f(r=M,y), where M is a magnification factor. The error due to incorrect

hologram size will be given by the difference f(r=M, y)� f(r, y) and can be written
in terms of a Taylor expansion as

f
�
r

M
; y
�
� fðr; yÞ ¼ f r þ 1

M
� 1

� �
r; y

� �
� fðr; yÞ

¼ @fðr; yÞ
@r

� �
1

M
� 1

� �
r þ . . .:

ð12:39Þ

FIGURE12.47. Moiré analysis of an interferogramwith a large tilt (linear carrier). (a) Interferogram tobe

analyzed, (b) ideal computer generated interferogram, (c) superposition of the interferogram with the ideal

reference interferogram and, (d) low pass filtered interferogram combination.
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where terms higher than first order can be neglected ifM is sufficiently close to 1 and

a small region is examined. Note that this error is similar to a radial shear. When the

CGH is plotted, alignment aids, which can help in obtaining the proper hologram

size, must be drawn on the hologram plot.

The largest source of error is distortion in the hologram plotter (Wyant et al.,

1984). The CGH wavefront accuracy depends on the number of plotter resolution

points and the maximum slope of the aspheric wavefront being tested. Assuming that

the plotter has P� P resolution points, there are P=2 resolution points across the

radius of the hologram. Since the maximum error in plotting any point is half a

resolution unit, any portion of each line making up the hologram can be displaced by

a distance equal to 1=P. If the maximum difference between the slope of the test

wavefront and the tilted plane wave is 4Swaves per hologram radius, the phase of the

plane wave at the hologram lines can differ from that of the required wavefront at the

same lines by as much as 4S=P waves (1980). The maximum error in the recon-

structed wavefront will be 4S=P waves, and since the final interferogram is recorded

in the image plane of the hologram, the quantization due to the finite number of

resolution points causes a peak error in the final interferogram of 4S=P waves. It is

important to note that the peak wavefront error of 4S=P waves is really a worst-case

situation; it occurs only if, in the region of the hologram where the slope difference is

maximum, the plotter distortion is also a maximum. This systematic error due to

plotter distortion can be calibrated when the plotter distortion is known (Wyant et al.,

1984). When the maximum plotting error is equal to one-half of the resolution spot

size, the sensitivity of the CGH test �W is given by 4S=P, where P is the number of

distortion-free plotter points. Using an e-beam recorder with 0.25-mm resolution over

a l0-mm-diameter hologramwould enable the measurement of an aspheric wavefront

with a maximum wavefront slope of 1000 waves per radius to be tested to a

sensitivity of l/10 (assuming a perfect plotter).

12.12.3. Off-Axis CGH Aspheric Compensator

To ensure that there is no overlapping of the first and second orders in the Fourier

plane (where the spatial filter is located), the tilt angle of the reference plane wave

needs to be greater than three times the maximum wavefront slope of the aberrated

wave. (Note that there are no even orders for a grating with a 50% duty cycle.) A

photograph of the diffracted orders from the hologram in the Fourier plane is shown

in Figure 12.48, and a diagram detailing the necessary separations of the orders in the

Fourier plane is shown in Figure 12.49. The bandwidth of the Nth order is given by

2NS, where S is the maximum wavefront slope in waves per radius of the wavefront

to be reconstructed. This bandwidth (diameter of the diffracted beam in the Fourier

plane) determines the size of the spatial-filtering aperture. By moving the spatial-

filtering aperture, the output of the interferometer can either be the interference of

two plane waves or two aspheric waves.

If the hologram is recorded on a very high-quality optical flat or used in reflection,

it can be placed in a single beam of the interferometer, as illustrated in Figure 12.50

using a Fizeau configuration. As we mentioned before, with a pinhole we can isolate,

Q5
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FIGURE 12.48. Diffracted order in Fourier plane of CGH.
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FIGURE 12.49. Diffracted orders in Fourier plane of CGH.
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FIGURE 12.50. Fizeau interferometer utilizing a CGH in one beam.
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either the diffracted orders (�1, 0) with (0, �1) or the orders (0,1) with (1,0). The

whole wavefront compensation is performed in only one of the two passes through

the CGH.

Figure 12.50 shows the results of measuring a l0-cm-diameter F=2 parabola using
a CGH generated with an e-beam recorder (Leung et al., 1980). The fringes obtained

in a Twyman–Green interferometer using a helium–neon source without the CGH

present are shown in Figure 12.51(a). After the CGH is placed in the interferometer, a

much less complicated interferogram is obtained as shown in Figure 12.51(b). The

CGH corrects for about 80 fringes of spherical aberration and makes the test much

easier to perform.

12.12.4. In-Line CGH Aspheric Compensator

In-line CGHs have the disadvantage with respect to off-axis CGHs that high-order

images cannot be completely separated. In this hologram, the separation is made

taking advantage that they are focused at different planes, but the isolation of the

desired first order cannot be complete. However, they have two great advantages.

First, that the alignment is much simpler and second, that since the lateral carrier is

not introduced, the degree of asphericity that can be measured is higher. In-line CGH

compensators have been described by Mercier et al., (1980), Fercher (1976), and

Tiziani et al. (2001). They can be used in a Twyman–Green or Fizeau interferometer,

as shown in Figure 12.52.

To avoid asymmetry, so that the paths in and out of the system formed by the CGH

and surface under test are the same, the beam to be isolated to produce the inter-

ference pattern with the reference beam is the (1, 1).

To test an aspheric convex surface, the arrangement shown in Figure 12.53 can be

used. However, to reduce the required size of the auxiliary reference concave surface,

the separation between the reference surface and the convex surface can be reduced

to a small distance, as suggested by Burge (1995), by engraving the hologram rings

on the concave reference surface, as illustrated in Figure 12.54. Notice that the light

rays arrive perpendicularly to the concave reference surface, and then, after diffrac-

tion, they become perpendicular to the surface under test. Thus, even if the reference

FIGURE12.51. Results of testing a 10-cm diameterF/2 paraboloid (a) without and (b) with a CGHmade

using an e-beam recorder.
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FIGURE 12.52. Testing a concave aspheric surface with an in-line CGH compensator used in a Fizeau

interferometer.
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FIGURE 12.53. Testing a convex aspheric surface with an in-line CGH compensator used in a Fizeau

interferometer.
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FIGURE 12.54. Testing a convex aspheric surface with a test plate with an in-line CGH compensator on

its concave surface.
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surface and the surface under test are placed in contact at the vertex, they would not

have exactly the same curvature.

12.12.5. Combination of CGH with Null Optics

Although a CGH can be designed for any optical system, a point is reached where the

time and expense required tomake a CGH are unreasonable. Also, given enough time

and money, null optics, either reflective or refractive, can be designed and built to test

almost any arbitrarily complicated optical system.

It is possible to replace the complicated CGH or the complicated null optics

required to test complicated optical surfaces (notably aspherical surfaces) with a

combination of relatively simple null optics and a relatively simple CGH.

To illustrate the potential of the combined test, results for a CGH-null-lens test of

the primary mirror of an eccentric Cassegrain system with a departure of approxi-

mately 455 waves (at 514.5 nm) and a maximum slope of approximately 1500 waves

per radius are shown in Figure 12.55 (Wyant and O’Neill, 1974). The mirror was a

69-cm-diameter off-axis segment whose center lies 81 cm from the axis of symmetry

of the parent aspheric surface. The null optics was a Maksutov sphere (as illustrated

in Figure 12.56), which reduces the departure and slope of the aspheric wavefront

FIGURE 12.55. Setup to test the primary mirror of a Cassegrain telescope using a Maksutov sphere as a

partial null with a CGH.
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from 910 to 45 waves and from 3000 to 70 waves per radius, respectively. A

hologram was then used to remove the remaining asphericity.

Figure 12.55(a) shows interferograms obtained using the CGH-Maksutov test of

the mirror under test. Figure 12.55(b) shows the results when the same test was

performed using a rather expensive refractive null lens. When allowance is made for

the fact that the interferogram obtained with the null lens has much more distortion

than the CGH-Maksutov interferogram, and for the difference in sensitivity

(l ¼ 632:8 nm for the null lens test and 514.5 nm for the CGH-Maksutov test),

the results for the two tests are seen to be very similar. The ‘‘hills’’ and ‘‘valleys’’ on

the mirror surface appear the same for both tests, as expected. The peak-to-peak

surface error measured using the null lens was 0.46 waves (l ¼ 632:8 nm), while for

the CGH-Maksutov test it was 0.39 waves (514.5 nm). The rms surface error

measured was 0.06 waves (632.8 nm) for the null lens, while the CGH-Maksutov

test gave 0.07 waves (l ¼ 514:5 nm). These results certainly demonstrate that

expensive null optics can be replaced by a combination of relatively inexpensive

null optics and a CGH.

The difficult problem of testing aspheric surfaces, which are becoming increas-

ingly popular in optical design, is made easier by the use of CGHs. The main problem

with testing aspheric optical elements is reducing the aberration sufficiently to ensure

that light gets back through the interferometer. Combinations of simple null optics

with a CGH to perform a test enable the measurement of almost any optical surface.

The making and use of a CGH are analogous to using an interferometer setup that

yields a large number of interference fringes and measuring the interferogram at a

large number of data points. Difficulties involved in recording and analyzing a high-

density interferogram and making a CGH are very similar. In both cases, a large
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FIGURE 12.56. Results of testing using setup of Figure 12.55 (a) CGH-Maksutov test (l ¼ 514:5 nm)

and using null lens (l ¼ 632:8 nm). (From Wyant and O’Neill, 1974.)
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number of data points are necessary, and the interferometer must be ray traced so that

the aberrations due to the interferometer are well known. The advantage of the CGH

technique is that once the CGH is made, it can be used for testing a single piece of

optics many times or for testing several identical optical components (Greivenkamp,

1987). In addition, it is much easier for an optician to work with a null setup.

12.13. ASPHERIC TESTING WITH TWO-WAVELENGTH

HOLOGRAPHY

The surface under test is often not known close enough to perform a null test. Even if

a null test is attempted, the resulting interferogram may contain too many fringes to

analyze. Since high accuracy may not be needed, a longer wavelength light source

could be used in the interferometer to reduce the number of fringes. Unfortunately, a

long wavelength light source creates problems because film and detector arrays may

not be available to record the interferogram directly, and the inability to see the

radiation causes considerable experimental difficulty. Two-wavelength and multiple-

wavelength techniques provide a means of synthesizing a long effective wavelength

using visible light to obtain an interferogram identical to the one that would be

obtained if a longer wavelength source were used as shown by several authors,

among others byWyant (1971); Wyant et al. (1984); Cheng andWyant (1984, 1985);

Creath et al. (1985); Creath and Wyant (1986); and Wyant and Creath (1989).

Two-wavelength holography is performed by first photographing the fringe

pattern obtained by testing an optical element using a wavelength l1 in an inter-

ferometer such as the interferometer shown in Figure 12.56. This photographic

recording of the fringe pattern (hologram) is then developed, replaced in the inter-

ferometer in the exact position it occupied during exposure, and illuminated with the

fringe pattern obtained by testing the optical element using a different wavelength l2.
The resulting two-wavelength fringes can either be thought of as the moire between

the interference fringes stored in the hologram (recorded at l1 and replayed at l2) and
the live interference fringes (at l2), or as the secondary interference between the test
wavefront stored in the hologram and the live test wavefront. These fringes are

identical to those that would be obtained if the optical element was tested using a

long effective wavelength given by (Wyant, 1971)

le ¼
l1l2

jl1 � l2j
ð12:40Þ

Table 12.6 lists the values of le that can be obtained using various pairs of

wavelengths from an argon-ion and a helium–neon laser. By the use of a dye laser,

a large range of equivalent wavelengths can be obtained. Tunable helium–neon lasers

with four or five distinct wavelengths ranging from green to red are also available.

The contrast in the final interferogram can be increased by spatial filtering. If the

filtering is to be effective, the angle between the two interfering beams in the

interferometer must be such that only the object beam, not the reference beam,
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passes through the spatial filter (aperture) shown in Figure 12.56. The spatially

filtered pattern yields the interference between the wavefront produced by illuminat-

ing (with wavelength l2) the hologram recorded at wavelength l1 and the wavefront
obtained from the optical element using wavelength l2. Since the two-wavelength

holography interferogram provides the difference between the two interfering beams

only in the plane of the hologram, the fringe pattern (hologram) must be recorded in

the plane conjugate to the test surface. The final photograph of the interferogram

should be recorded in the image plane of the hologram.

Figure 12.57(a) shows an interferogram of an optical element tested using a

wavelength of 488.0 nm. The other interferograms were obtained using two-

wavelength holography to test the same optical element. The interferograms in

Figures 12.57(b) to 12.57(e) were obtained by recording an interferogram (holo-

gram) using a wavelength of 514.5 nm and illuminating the recording with the fringe

pattern obtained using a wavelength of 476.5 nm for Figures 12.57(b,c) and of

488.9 nm for Figures 12.57(d,e). The interferograms were spatially filtered, and

the amount of tilt shown was adjusted in real time by changing the angle at which

the reference wavefront was incident on the hologram during the reconstruction. The

interferograms in Figures 12.57(f,g) were obtained by recording an interferogram

using a wavelength of 488.0 nm and illuminating this recording with the fringe

pattern obtained using a wavelength of 476.5 nm and of 496.5 nm, respectively.

In two-wavelength holography, the final interferogram gives the difference

between a fringe pattern recorded at one instant of time and a fringe pattern existing

at some later instant of time. If the two fringe patterns are different for reasons other

than wavelength change (e.g., air turbulence), incorrect results are obtained. This

means that if air turbulence causes a one-fringe change between the fringe pattern

obtained using l1 ¼ 488:0 nm and the fringe pattern obtained using l2 ¼ 514:5 nm,

the final interferogram will contain one fringe of error corresponding to 9.47 mm.

The effect of air turbulence can be reduced by simultaneously recording the

interferograms resulting from the two wavelengths. If the recording process is

sufficiently nonlinear and the interferograms have sufficiently high contrast, the

interferogram obtained shows the Moiré pattern described earlier. Generally, this

Moiré pattern is too low in contrast to be useful. However, when this interferogram

(hologram) is illuminated with a plane wave, is spatially filtered, and is reimaged in

TABLE 12.6. Possible effective wavelengths in mm obtainable with argon–ion

and helium–neon lasers.

l in nm 459.7 476.5 488.0 496.5 501.7 514.5 632.8

459.7 — 11.73 9.95 5.89 5.24 4.16 1.66

476.5 11.73 — 20.22 11.83 9.49 6.45 1.93

488.0 9.95 20.22 — 28.50 17.87 9.47 2.13

496.5 5.89 11.83 28.50 — 47.90 14.19 2.30

501.7 5.24 9.49 17.87 47.90 — 20.16 2.42

514.5 4.16 6.45 9.47 14.19 20.16 — 2.75

632.8 1.66 1.93 2.13 2.30 2.42 2.75 —

Q6
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the manner shown in Figure 12.56, the result is a high-contrast interferogram,

identical to that obtained using the two-wavelength holography method described

earlier. Since both fringe patterns are recorded simultaneously, and air dispersion is

small, the sensitivity of the interferometer to air turbulence is essentially the same as

if a long wavelength light source were used in the interferometer.

More details on the applications of two-wavelength and multiple-wavelength

interferometry will be given in Chapter 15.

12.14. WAVEFRONT STITCHING

When the wavefront is strongly aspheric and even with zero tilt in the refer-

ence wavefront, the minimum fringe spacing is too small an option to measure the

wavefront by segmenting the complete aperture in small regions where the Nyquist

condition is not violated, so that the minimum fringe spacing is larger than twice the

pixel spacing. There are many approaches to dividing the aperture, but they can be

classified in three broad categories.

12.14.1. Annular Zones

One obvious procedure to is to use several different defocussing values, as

described by Liu et al. (1988) and by Melozzi et al. (1993). Then, for several

rings where the fringe spacing never exceeds, the Nyquist limit are obtained. This

is clearly illustrated in Figure 12.58 where three different defocusing values are

used. The useful ring where the fringes can be processed has a much larger contrast

than the rest.

FIGURE 12.57. Interferograms of an aspheric surface with three different defocusing values. The useful

ring where the fringes can be processed has a larger contrast than the rest.
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12.14.2. Circular Zones

Another method to measure an aspherical surface by stitching is to divide the

aperture in many circular zones where the tilt as well as the defocusing is optimized

to maximize the minimum fringe spacing. For example, the evaluation of an aspheric

surface can be made with many small glass test plates, each one optimized for a

different region (Jensen et al., 1984).

This method is also useful when measuring large optical surfaces whose size is

much larger than the interferometer aperture (Sjödahl and Oreb, 2002), for example,

when testing an extremely large plane (Negro, 1984). Special techniques must be

used to insure the continuity of the different apertures, for example with some

overlapping and polynomial fitting of the apertures to join them.

12.14.3. Dynamic Tilt Switching

Still another approach, described by Liesener and Tiziani (2004) and Liesener et al.

(2004), is to change the tilt in a dynamic manner. Here, again, the useful zone has a

much better contrast than the undersampled zone, where the fringes cannot be

processed.

To change the tilt of the reference wavefront in a Twyman–Green interferometer

in a dynamic manner, the arrangement in Figure 12.59 is used, where the tilted

reference beam is generated by electronically selecting different point light sources

in a rectangular array. This array, called a phase shifting point source array consists

of a high resolution liquid crystal display, followed by a microlens array and an

array of pinholes in front of it, at the focii of the microlenses. When a small zone in

front of a pinhole is made transparent, all the rest are opaque. However, even if all

zones are made transparent, the light from a microlens enter a pinhole only if the

light passing thorough a diffraction grating generated on the desired zone diffracts

the light so that the first order diffracted light falls on the pinhole. This is illustrated

in Figure 12.60. Once a tilt has been selected, the interferogram to be processed is

like those in Figure 12.61.

FIGURE 12.58. Schematics of the system to produce a dynamic tilt switching of the referencewavefront

in a Mach–Zehnder interferometer.
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FIGURE 12.59. Detail of the device used to the dynamic tilt switching.
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FIGURE 12.60. Interferograms with three different tilts. The zone to be processed is that with the large

fringe spacing, not exceeding the Nyquist limit for the detector being used.

FIGURE 12.61. Interferograms of an optical element at a number of different effective wavelengths: (a)

l ¼ 488 nm, (b) le ¼ 6:45 mm, (c) le ¼ 6:45mm, (d) le ¼ 9:47 mm, (e) le ¼ 9:47 mm, (f) le ¼ 20:22mm,

(g) le ¼ 28:50 mm. (FromWyant, 1971.)
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